分类: 工商管理学 >> 企业管理 提交时间: 2024-09-23 合作期刊: 《中国商论》
摘要:随着经济全球化及大数据技术的蓬勃发展,跨国零售商之间的竞争日益激烈,根据客户特征进行客户细分,协助客户进行个性化的服务体验,有利于跨国零售商实现精准营销和高效的客户关系管理。为了提高客户细分的精度,本文提出一种基于RFM模型的K-means聚类算法,使用簇内误方差(SSE)和轮廓系数(Silhouette Coefficient)计算聚类个数,优化K值选取。本文选取一家跨国零售商的数据进行实证检验,对细分后的结果进行特征分析,将客户划分为核心型客户、维护型客户和风险型客户三种类别,并为不同客户群体提供差异化营销策略,仅供参考。