The Dynamic Dependence of Investor Sentiment in China and the United States
摘要: 投资者情绪在市场间的传染会加速金融风险的扩散,因此随着中国资本市场的逐步开放,研究投资者情绪传染对中国资本市场的影响越来越迫切。采用波动率指数作为中美投资者情绪的代理指标,并利用 Copula -DCC -GARCH 模型和结构变点检验方法,对 2014年以来中美两国投资者情绪动态相依性的总体特征、结构特征、时变性及突变性进行全面考察,结果表明,总体而言,中美两国投资者情绪具有整体的正向动态相依性,其动态相关系数均值为 0. 2448,金融风险容易从美国向中国扩散,但是牛市或熊市下投资者情绪的传染没有明显的差异; 中美投资者情绪的动态相依性具有时变性,并存在 5 个变点,这些特征与中国经济金融基本面因素相关,且除了一个区段动态相关系数均值略小于 0 之外,其他区段动态相关系数均值均远大于 0,说明两国投资者情绪间具有很强的相关性。
Abstract: Investor sentiment contagion between markets will accelerate the spread of financial risks, so with the gradual opening of China's capital market, it is more and more urgent to study the impact of investor sentiment contagion on China's capital market. Using the volatility index as a proxy of investor sentiment in China and the United States, and using the Copula-DCC-GARCH model and the structural change point test method, this paper comprehensively examines the overall characteristics, structural characteristics, time-varying and mutability of the dynamic dependence of investor sentiment in China and the United States since 2014. Investor sentiment in China and the United States has an overall positive dynamic dependence, with a mean dynamic correlation coefficient of 0. 2448, financial risks are easy to spread from the United States to China, but there is no significant difference in the contagion of investor sentiment between bull and bear markets. The dynamic dependence of investor sentiment in China and the United States is time-varying, and there are five change points.These characteristics are related to China's economic and financial fundamentals, and the average dynamic correlation coefficient in one section is slightly less than 0, while the average dynamic correlation coefficient in other sections is much greater than 0, indicating that there is a strong correlation between investor sentiment in the two countries.
[V1] | 2024-01-17 22:42:57 | PSSXiv:202401.00099V1 | 下载全文 |
1. 普惠金融视角下互联网众筹与银行贷款的选择——基于资金供求不确定性的实证分析 | 2024-11-17 |
2. 守正创新、行稳致远:消费金融“智胜”之道 | 2024-11-17 |
3. 如何有效评估节能减排影响——基于能源转型的全球宏观经济模型 | 2024-11-17 |
4. 关于新质生产力与科技金融的思考 | 2024-11-17 |
5. 科技金融中的债务融资 | 2024-11-17 |