Research on the Influencing Factors and Correlation Paths of Negative Comment Behavior of Social Media Users in Emergency Situations
摘要: [目的/意义]分析社交媒体用户负面评论行为影响因素,丰富用户负面评论行为影响因素理论和实践研究,为相关机构管控突发事件中的网络舆情提供策略参考。[方法/过程]通过情感词典分析法对爬取的微博文本数据进行情感倾向分析并结合信息生态理论归纳出影响因素,使用改进ISM解释结构模型、MICMAC交叉矩阵相乘法确定影响因素的关联路径和层级模型。[结果/结论]综合分析社交媒体用户负面评论行为15个影响因素之间的层级关系,结合信息生态理论构建用户负面评论行为影响因素解释结构模型,并基于信息生态视角为缓解负面评论行为和正确引导舆情提出合理性的策略和建议。
Abstract: [Purpose/significance] To analyze the influencing factors of social media users’ negative comment behavior, enrich the theoretical and practical research on the influencing factors of users’ negative comment behavior, and provide strategic reference for relevant institutions to control public opinion in emergencies. [Method/process] Emotion dictionary analysis was used to analyze the emotional tendency of the text data and the influencing factors were summarized by combining the information ecological theory. The improved ISM interpretation structure model and MICMAC cross matrix multiplication were used to determine the correlation path and hierarchical model of the influencing factors. [Results/conclusions] Comprehensive analysis of social media users 15 negative reviews behavior level relations between the influencing factors, combining with the information ecology theory to build user negative reviews behavior influence factor explanation structure model, and based on information ecology perspective to alleviate negative comments behavior and guide public opinion correctly rationality strategy and Suggestions are put forward.
[V1] | 2024-09-30 19:11:21 | PSSXiv:202410.00146V1 | 下载全文 |
1. 开放科学实践特征分析与启示——基于美国OSTP“开放科学年”项目 | 2024-10-15 |
2. 政府数据开放生态系统如何驱动数据要素市场化发展 ——基于模糊集定性比较分析 | 2024-10-15 |
3. 公共数据开放中隐性安全风险的内涵、 表现及其生成逻辑 | 2024-10-15 |
4. “副号即隐私”:Z世代用户社交媒体信息发布行为特点研究 | 2024-10-15 |
5. 新老年用户短视频生成行为动因研究 ——麦克拉斯基需求分类理论视角 | 2024-10-15 |