Algorithms decision-making, collusion and antitrust regulation
摘要: 随着人工智能的发展,算法能够自主学习并实现目标行为规则,会显著影响市场行为和竞争模式。针对此问题,本文聚焦于Q-learning算法在市场合谋中的应用,通过对伯特兰德双寡头竞争市场进行模拟,研究了Q-learning算法在不同参数设置下的合谋能力和稳定性。结果表明,虽然提高学习率和实验参数会导致合谋结果,但可能需要更长的周期来达到合谋程度的上升。该结论在扩大动作网格维度的情况下依然稳健,但在扩大边际成本设置时则会导致无效合谋,且折现系数δ不宜过低,否则无法实现合谋。最后基于研究结果提出相应的政策建议。
Abstract: With the development of artificial intelligence, algorithms can autonomously learn and implement target behavioral rules, which will significantly affect market behavior and competition patterns. To solve this problem, this paper focuses on the application of Q-learning algorithm in market collusion, and studies the collusion ability and stability of Q-learning algorithm under different parameter Settings by simulating Bertrand duopoly competition market. The results suggest that while increasing the learning rate and experimental parameters will lead to collusion outcomes, it may take a longer period to reach an uptick in collusion levels. This conclusion is still robust when the dimension of the action mesh is enlarged, but it will lead to ineffective collusion when the marginal cost setting is enlarged, and the discount coefficient δ should not be too low, otherwise collusion cannot be realized. Finally, the corresponding policy recommendations are put forward based on the research results.
[V1] | 2024-11-26 15:15:39 | PSSXiv:202411.02350V1 | 下载全文 |
1. 达龙·阿西莫格鲁对宏观经济学和劳动经济学的贡献 | 2024-12-03 |
2. 哥伦比亚自由贸易园区发展经验及启示 | 2024-11-29 |
3. 云南创建乡村振兴示范村的经验及需要深入研究的问题 | 2024-11-29 |
4. 非洲国家出口产品集中度与经济发展的关联——基于两段经济衰退期数据的分析 | 2024-11-29 |
5. RCEP知识产权议题:谈判障碍与应对策略——基于自贸协定知识产权规则变革视角的分析 | 2024-11-29 |